首页 » 网站建设 » PHP框架api辨认技巧_从人脸识别到机械翻译52个有用的机械进修和猜测API

PHP框架api辨认技巧_从人脸识别到机械翻译52个有用的机械进修和猜测API

访客 2024-12-12 0

扫一扫用手机浏览

文章目录 [+]

参与:吴攀

工智能正在成为新一代技能变革的根本技能,但从头开始为自己的运用和业务开拓人工智能程序既本钱高昂,且每每很难达到自己想要的性能表现,但好在我们有大量现成可用的 API 可以利用。

PHP框架api辨认技巧_从人脸识别到机械翻译52个有用的机械进修和猜测API

开拓者可以通过这些 API 将其它公司供应的智能识别、媒体监测和定向广告等人工智能做事集成到自己的产品中。
机器之心在 2015 年底就曾经编译过一篇先容当前优质人工智能和机器学习 API 的文章《技能 | 50个常用的人工智能和机器学习API》,列举了 50 个较为常用的涉及到机器学习、推理预测、文本分析及归类、人脸识别、措辞翻译等多个方面的 API。
一年多过去了,好用的 API 也涌现了一些新旧更迭,现在是时候对这篇文章进行更新了。

PHP框架api辨认技巧_从人脸识别到机械翻译52个有用的机械进修和猜测API
(图片来自网络侵删)

本文所有的 API 分成以下四组:

面部和图像识别

文本分析、自然措辞处理、感情剖析

措辞翻译

预测和其它机器学习

每一组我们都因此首字母排序的,干系描述来自其网址链接在 2017 年 2 月 3 日的先容信息。
如果你知道另一些很好的 API 但这里没有收录,一定记得向我们分享!

面部和图像识别

1.Animetrics Face Recognition:该API能用来检测图片上的人物面部,并且将其和已知的面部特色进行比对。
该API还能在可搜索的图库中添加或移除搜索主题,也可以在某个主题中添加或删除某张脸。
链接:http://api.animetrics.com

2.Betaface:一个面部识别和检测的网页做事。
供应了包括多面部识别、面部遮蔽、123个面部点(22个基本,101个高等)检测、面部验证、鉴定、大数据集中相似度搜索等功能。
链接:https://www.betaface.com/wpa

3.Eyedea Recognition:专注于高端打算机视觉办理方案,紧张关注目标检测和目标识别软件。
一个供应眼睛、面部、载具、版权和车牌检测的识别做事。
该 API 的最大代价在于其能够即时理解物体、用户和行为。
链接:http://www.eyedea.cz

4.Face++:一个面部识别和检测做事,供应了可以集成到运用中的检测、识别和剖析做事。
利用者可以通过调用该做事来演习该程序,实现检测面部、识别面部、面部分类、创建面部集、创建分组和获取信息等功能。
链接:https://www.faceplusplus.com

5.FaceMark:其供应的API能够识别正面人脸照片上的68个点以及侧脸照片上的35个点。
链接:http://apicloud.me/apis/facemark/docs

6.FaceRect:这是一个用于面部检测的强大 API,而且是完备免费的。
该 API 可以找到单张照片中的脸(正面或侧面均可)或多张脸,并为每一张找到的脸给出一个 JSON 输出。
此外,FaceRect 可以为每一张检测到的脸找到面部特色(眼睛、鼻子和嘴)。
链接:http://apicloud.me/apis/facerect/demo

7.Google Cloud Vision API:该 API 由 TensorFlow 等强大的平台驱动,能够实现可以学习和预测图像内容的模型。
其能很快地在大范围内帮助用户找到最喜好的图片,并且还带有丰富的注释。
它能将图片分成好几千类(如:船、狮子、埃菲尔铁塔),能够检测干系表情的面孔,还能识别出图片上多种措辞的印刷笔墨。
链接:https://cloud.google.com/vision

8.IBM Watson Visual Recognition:能够理解图像的内容——图像的视觉观点标签、探求人脸、给出近似年事和性别、探求一个凑集中相似的图像。
你也可以通过创建自己的自定义观点来演习该做事。
链接:https://www.ibm.com/watson/developercloud/visual-recognition.html

9.Kairos:许可用户将感情剖析和面部识别快速整合进他们的运用和做事中的平台。
链接:https://www.kairos.com/docs/api

10.Microsoft Cognitive Service - Computer Vision:这个基于云的 API 可以基于输入和用户选择以不同的办法剖析视觉内容。
比如,基于内容标记图像;分类图像;检测人脸并返回坐标;识别特定领域的内容;天生内容的描述;识别图像中找到的文本;标记成人内容。
链接:https://www.microsoft.com/cognitive-services/en-us/computer-vision-api

11.Rekognition:为社交图片运用供应面部和场景的识别和优化。
Rekognition API可以利用眼睛、嘴、鼻子和面部的特色实现感情识别和性别检测,可以用来确定性别、年事和感情。
链接:http://www.programmableweb.com/api/rekognition

12.Skybiometry Face Detection and Recognition:供应人脸检测和识别做事。
该 API 的新版本包含了区分墨镜和透明眼镜的功能。
链接:https://skybiometry.com/Documentation

文本分析、自然措辞处理、感情剖析

1.Bitext:供应了最精确的多措辞的基于主题的市场中的情绪。
目前供应了四种语义做事:实体和观点提取、情绪剖析和文本分类。
该 API 支持 8 种措辞。
链接:https://www.bitext.com/text-analysis-api-2/#How-accurate-is-the-analysis

2.Diffbot Analyze:供应了能用来对任何网页进行识别、剖析和紧张内容和章节提取的开拓者工具。
链接:https://www.diffbot.com/dev/docs/analyze/

3.Free Natural Language Processing Service:一个免费做事,包括情绪剖析、内容提取和措辞检测。
这是大规模云 API 市场中一个盛行的数据 API。
链接:https://market.mashape.com/loudelement/free-natural-language-processing-service

4.Google Cloud Natural Language API:剖析文本的构造和含义,包括情绪剖析、实体识别和文本标注。
链接:https://cloud.google.com/natural-language/reference/rest/

5.IBM Watson Alchemy Language:能用来教打算机学习如何阅读和进行文本分析(如,用于将非构造化的数据转换成构造化的数据,尤其是在社交网络监控、商业智能、内容推举、金融交易和定向广告领域)。
http://www.alchemyapi.com/

6.MeaningCloud Text Classification:该API能够完成一些预分类的任务,比如:提取文本、符号化、移除禁用词、词形还原。
链接:https://www.meaningcloud.com/developer/text-classification

7.Microsoft Azure Text Analytics API:是一个用 Azure Machine Learning 构建的文本分析网页做事套件。
该 API 可以被用于剖析非构造化的文本,可用于情绪剖析、关键短语提取、措辞检测和主题检测等任务。
无需演习数据。
链接:https://docs.microsoft.com/en-us/azure/machine-learning/machine-learn

8.Microsoft Cognitive Service - Text Analytics:能检测文本中的情绪、关键短语、主题和措辞。
链接:https://www.microsoft.com/cognitive-services/en-us/text-analytics-api 这一组(措辞的认知做事)的其它 API 包括:

Bing Spell Check:https://www.microsoft.com/cognitive-services/en-us/bing-spell-check-api

Language Understanding:https://www.microsoft.com/cognitive-services/en-us/language-understanding-intelligent-service-luis

Linguistic Analysis:https://www.microsoft.com/cognitive-services/en-us/linguistic-analysis-api

Web Language Model:https://www.microsoft.com/cognitive-services/en-us/web-language-model-api

9.nlpTools:是一个在 HTTP RESTful 网页做事上大略的 JSON,用于自然措辞处理。
其能解码在线新闻媒体以进行情绪剖析和文本分类。
链接:http://nlptools.atrilla.net/web/api.php

10.Semantic Biomedical Tagger:有一个内置的功能来识别133种生物实体类型,并且能通过语义剖析将其和已有的知识库系统链接起来。
链接:http://docs.s4.ontotext.com/display/S4docs/Semantic+Biomedical+Tagger

11.Thomson Reuters Open Calais™:利用了自然措辞处理、机器学习等方法。
Calais 能够将你的文档与实体(人、地点、组织等)、事实(人 X 为公司 Y 事情)和事宜(人 Z 在韶光 X 被任命为公司 Y 的主席)进行归类和链接。
链接:http://www.opencalais.com/opencalais-api/

12.Yactraq Speech2Topics:是一个能够通过语音识别 & 自然措辞处理将 audio visual 内容转换成主题元数据(topic metadata)的云做事。
链接:http://yactraq.com/

措辞翻译

1.Google Cloud Translation:可以动态地在数千个措辞对之间翻译文本。
该 API 让网站和程序可以通过编程的办法来与该翻译做事集成。
链接:https://cloud.google.com/translate/docs/

2.IBM Watson Language Translator:将文本从一种措辞翻译成另一种措辞。
该做事供应了多种特定领域的模型,让你可以基于你独特的术语和措辞进行自定义。
比如,客户可以用他们自己的措辞进行互换。
链接:http://www.ibm.com/watson/developercloud/language-translator.html

3.LangId:能快速地从任何种类的措辞中提取信息,没有限定任何措辞。
(即让你能识别你要剖析的任何文本的措辞)链接:http://langid.net/identify-language-from-api.php

4.Microsoft Cognitive Service - Translator:在翻译之前能够自动检测文本的措辞。
它支持 9 种措辞上的语音翻译和 60 种措辞的文本翻译。
链接:https://www.microsoft.com/cognitive-services/en-us/text-analytics-api

5.MotaWord:是一个快速的人类翻译平台。
其供应了超过70种措辞的相互翻译。
该API还许可开拓者得到每一次翻译的记录、提交带有文档和风格辅导的项目、跟踪翻译项目的进度并得到实时活动数据流。
链接:https://www.motaword.com/developer

6.WritePath Translation:其API许可开拓者在其它运用中接入和整合WritePath的功能。
其运用案例包括字数统计、发布翻译文档和检索已翻译的文档和文本。
链接:https://www.writepath.co/en/developers

预测和其它机器学习

1.Amazon Machine Learning:可用来找到数据的模式。
已有用户利用该API来实行敲诈检测、需求预测、目标市场确定和点击预测剖析等任务。
链接:https://aws.amazon.com/documentation/machine-learning/

2.BigML:BigML是为基于云的机器学习和数据剖析供应的做事。
用户可以通过标准的 HTTP 利用基本的监督和非监督机器学习任务设置数据源和创建预测模型。
链接:https://bigml.com/api/

3.Ersatz:一个利用基于 GPU 的深度神经网络即做事的基于网页的预测程序。
在 Ersatz 中,演习了一组不同的神经网络模型(组合方法),有时候多达 20 个模型。
链接:http://www.ersatzlabs.com/documentation/api/

4.Google Cloud Prediction:供应了一个用于构建机器学习模型的 RESTful API。
这些工具可以帮助剖析你的数据以为你的运用增加各种功能,比如客户情绪剖析、垃圾检测、推举系统等。
链接:https://cloud.google.com/prediction/docs/

5.Google Cloud Speech API:利用快速和准确的语音识别来将音频(来自麦克风或文件)转换成文本。
支持超过 80 种措辞及其变体。
链接:https://cloud.google.com/speech/docs/apis

6.Guesswork.co:为电子商务网站供应产品推举引擎。
Guesswork能够准确预测用户的动机,它利用的是一个运行在Google Prediction API上的语音规则引擎。
链接:http://www.guesswork.co/

7.Hutoma:通过一个专有平台来帮助全天下的开拓者开拓和产品化深度学习谈天机器人,该平台供应了用于创建和分享会话人工智能的工具和通道。
链接:https://www.hutoma.com/about.html

8.IBM Watson Conversation:构建理解自然措辞的谈天机器人,并将它们支配在平台和网站以及任何设备上。
链接:https://www.ibm.com/watson/developercloud/conversation.html 。
这一类(用于措辞的认知做事)的 API 还包括:

Dialog:https://www.ibm.com/watson/developercloud/dialog.html

Natural Language Classifier:https://www.ibm.com/watson/developercloud/nl-classifier.html

Personality Insights:https://www.ibm.com/watson/developercloud/personality-insights.html

Document Conversion:https://www.ibm.com/watson/developercloud/document-conversion.html

Tone Analyzer:https://www.ibm.com/watson/developercloud/tone-analyzer.html

9.IBM Watson Speech:包括「语音转文本」和「文本转语音」。
(用于比如,转录呼叫中央的对话或创建语音掌握的运用)

语音转文本:https://www.ibm.com/watson/developercloud/speech-to-text.html

文本转语音:https://www.ibm.com/watson/developercloud/text-to-speech.html

10.IBM Watson Data Insights:这个凑集包含 3 个 API:AlchemyData News、Discovery 和 Tradeoff Analytics。
AlchemyData 供应了利用自然措辞处理丰富过的新闻和博客内容。
Tradeoff Analytics 能帮助人类在平衡多个目标时进行决策。
链接:https://www.ibm.com/watson/

11.IBM Watson Retrieve and Rank:开拓者可以将自己的数据加载到该做事中,并用已知的干系结果对机器学习模型(Rank)进行演习。
做事输出包括一个干系文档和元数据列表。
比如,一个联结中央代理可以快速找到能提升均匀呼叫处理韶光的答案。
链接:http://www.ibm.com/watson/developercloud/retrieve-rank.html

12.Imagga:供应了能为你的图像自动分配标签的 API,让你的图像可被查找。
其基于一个图像识别的平台及做事。
链接:https://imagga.com/solutions/auto-tagging.html

13.indico:供应文本分析(如,情绪剖析、Twitter 参与、感情)和图像剖析(如,面部感情、面部定位)。
indico API是可以免费利用的,也不须要供应演习数据。
链接:https://indico.io/docs

14.Microsoft Azure Cognitive Service API:正在替代 Azure Machine Learning Recommendations 做事,供应基于预测剖析的办理方案。
其能为客户供应个性化的产品推举和提升发卖成绩。
这个新版本有新的功能,比如批量支持、更好的 API Explorer、更清爽的 API 界面、更同等的注册和支付体验等。
链接:https://azure.microsoft.com/en-au/services/cognitive-services/

15.Microsoft Azure Anomaly Detection API:利用韶光中均匀间隔的数值来检测时序数据中的非常。
比如,当检测打算中的内存利用时,一个上升趋势可能是干系的,由于其可能指示了着内存透露。
链接:https://gallery.cortanaintelligence.com/MachineLearningAPI/Anomaly-Detection-2

16.Microsoft Cognitive Service - QnA Maker:将信息提炼成对话式的、易于浏览的答案。
链接:https://www.microsoft.com/cognitive-services/en-us/qnamaker 。
这一组(用于知识的认知做事)的 API 还包括:

Academic Knowledge:https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api

Entity Linking:https://www.microsoft.com/cognitive-services/en-us/entity-linking-intelligence-service

Knowledge Exploration:https://www.microsoft.com/cognitive-services/en-us/knowledge-exploration-service

Recommendations:https://www.microsoft.com/cognitive-services/en-us/recommendations-api

17.Microsoft Cognitive Service - Speaker Recognition:让你的运用能知道是谁在说话。
链接:https://www.microsoft.com/cognitive-services/en-us/speaker-recognition-api 。
在同一组(用于语音的认知做事)的 API 包括:

Bing Speech(将语音转换成文本,然后转换回来,并理解其目的):https://www.microsoft.com/cognitive-services/en-us/speech-api

Custom Recognition:https://www.microsoft.com/cognitive-services/en-us/custom-recognition-intelligent-service-cris

18.NuPIC:是一个用 Python / C++ 编写的开源项目,实现了 Numenta 的 Cortical Learning Algorithm,由 NuPIC 社区掩护。
该 API许可开拓者利用原始算法进行事情,并可以将多个不同的领域(包括数据的不同层次)放到一起协同,并且还能利用其它平台的功能。
链接:https://github.com/numenta/nupic/wiki/NuPIC-API---A-bird's-eye-view

19.PredicSis:通过预测剖析获取大数据的强大见地和提升市场营销的表现。
链接:https://predicsis.ai/

20.PredictionIO:PredictionIO是一个构建与 Apache Spark、HBase 和 Spray 之上的开源的机器学习做事器,按 Apache 2.0 证书发布。
目前给出的API实例已经能实现创建和管理用户和用户记录、检索项目和内容、创建和管理基于用户的推举等功能了。
链接:http://predictionio.incubator.apache.org/index.html

21.RxNLP – Cluster Sentences and Short Texts:一个文本挖掘和自然措辞处理做事。
个中的Cluster Sentences API可以用来将句子(比如从不同的新闻源采集的内容)和短文本(比如Twitter和Facebook的状态更新)组织成逻辑分组。
链接:http://www.rxnlp.com/api-reference/cluster-sentences-api-reference/

22.Sightcorp F.A.C.E:这是一个网页做事,许可第三方运用更好地理解用户行为,并且还能从面部分析中得到用户的年事、性别、种族、面部表情、头部姿态等信息。
链接:http://face.sightcorp.com/doc_swagger/

其它资源

以下两个资源能看到其它 API 列表:

Mashape Blog:http://blog.mashape.com/list-of-20-sentiment-analysis-apis/

Programmable Web:http://www.programmableweb.com/news/t

标签:

相关文章