首页 » 网站建设 » php洋葱模子技巧_洋葱表皮带来材料研发新灵感 Science

php洋葱模子技巧_洋葱表皮带来材料研发新灵感 Science

访客 2024-12-06 0

扫一扫用手机浏览

文章目录 [+]

图片来源:Pixabay

翻译 武大可

php洋葱模子技巧_洋葱表皮带来材料研发新灵感  Science

编辑 魏潇

php洋葱模子技巧_洋葱表皮带来材料研发新灵感  Science
(图片来自网络侵删)

植物细胞壁的力学特性长期以来令人着迷:既具有足以支撑植物形态的强度,又能在未定裂的条件下延伸,对应力的非线性相应办法乃至能够主动变革以适应植物在不同阶段的成长需求。
这些特性都是新型材料设计研发者们梦寐以求的。
但纵然是在明确创造了这些特性的 80 年后,科学家们仍未明晰它们的成因。
最近,美国宾夕法尼亚州立大学的一项研究对细胞壁进行了建模,向揭开植物细胞壁独特力学性能背后的秘密迈进了一大步。

这项研究于 5 月 14 日揭橥在《科学》(Science)上,从全新的角度核阅了植物细胞壁。
研究者们创造,植物细胞壁强度高、延伸性好的力学性能紧张归功于细胞壁内纤维素框架的运动。
细胞壁内的纤维素聚拢成束担保了强度,同时可以在细胞拉伸时彼此滑动,带来了延展性。
这一研究帮助生物学家更好地理解了植物细胞的成长过程,并有望为具有更好的强度与延展性的高分子材料供应设计灵感。

“长久以来,对付植物细胞壁最普遍的认识是‘细胞壁是由纤维素加固的胶质,犹如由钢筋加固的混凝土’”宾夕法尼亚州立大学的生物学教授、这一研究的作者 Daniel Cosgrove 说,“但我们创造细胞壁的构造并非如此。
纤维素链粘连成束,纤维束形成了网络,这种构造的力学强度比杆状纤维悬浮在胶质中的构造高得多。
而在细胞受到拉伸时,有效地限定细胞壁扩展的并非其他身分,正是彼此间能够发生滑动的纤维链。

过去对植物细胞壁进行的建模研究尺度不是过大便是过小:要么从宏不雅观入手,并未整合单个细胞的行为;要么从原子水平入手,不能关注细胞壁实际的力学特色。
在这项研究中,研究者在细胞壁所含的聚合物(纤维素和其他糖分子的长链)水平上运用了粗粒度打算模型,利用类似弹簧的珠链构造而非单原子建模来表征纤维等身分,希望能准确复制其物理特性。

Cosgrove 说:“与其他模型不同,我们还对分子间的非共价键进行了建模,显示出分子相互粘附的趋势,这使得我们能够研究链之间的相互浸染。

团队对洋葱表皮细胞的细胞壁构造进行了建模,以将模型给出的力学特性与洋葱皮实验得到的实际数据进行比对。
通过以多种办法拉伸洋葱细胞壁,研究者探索了其独特力学特性背后的构造。

“植物细胞壁很独特,它须要足够坚固,为植物供应保护和支持浸染,但又要同时具有延展性,使自身能够在植物成长时扩展。
”这项研究的第一作者、宾夕法尼亚州立大学的生物博士后研究者 Yao Zhang 说,“我们创造纤维素的微纤维承担了大部分的张力,这是坚持细胞壁强度和延展性的关键。

研究者确认了纤维素的单个纤维之间的并列粘附关系。
在纤维束形成的网络中,超细纤维会在细胞被拉伸时伸缩式滑动,将力在网络中传导,终极导致了细胞的延伸。

“早在良久以前,研究者们就已经在干、湿平分歧条件下,对植物细胞壁的应力和应变等力学性能的变革进行了丈量。
”Cosgrove 说,“但直到现在,我们都没有在分子水平上对这些丈量结果进行阐明。
在这一研究中,我们阐明了植物细胞壁中各身分的浸染,并为植物研究中阐明性的实验供应了定量框架。

对付那些研究植物细胞壁特性及其调节机制的课题来说,这项研究提出的见地可能尤其有用。
例如,茎部新芽在春季迅速伸长,而果实却会长成球形。

研究职员希望将研究模型的适用范畴进一步扩展,用来仿照其他植物物种的细胞壁,同时将仿照规模扩展到全体细胞。

“从细胞壁所具有的强度和延展性这一点来看,人类技能目前还无法与大自然相提并论。
”Yao 说,“植物细胞壁的鬼斧神工或许将为绿色材料多种多样的设计与运用供应新的启迪。

本文来自微信公众年夜众号“科研圈”。
如需转载,请在“科研圈”后台回答“转载”,或通过"大众号菜单与我们取得联系。
干系内容禁止用于营销宣扬。

原文链接:

https://www.eurekalert.org/pub_releases/2021-05/ps-wmp051021.php

论文信息

【标题】Molecular insights into the complex mechanics of plant epidermal cell walls

【作者】Yao Zhang, Jingyi Yu, Xuan Wang, Daniel M. Durachko, Sulin Zhang, Daniel J. Cosgrove

【期刊】Science

【日期】2021年5月14日

【doi】http://dx.doi.org/10.1126/science.abf2824

【择要】Plants have evolved complex nanofibril-based cell walls to meet diverse biological and physical constraints. How strength and extensibility emerge from the nanoscale-to-mesoscale organization of growing cell walls has long been unresolved. We sought to clarify the mechanical roles of cellulose and matrix polysaccharides by developing a coarse-grained model based on polymer physics that recapitulates aspects of assembly and tensile mechanics of epidermal cell walls. Simple noncovalent binding interactions in the model generate bundled cellulose networks resembling that of primary cell walls and possessing stress-dependent elasticity, stiffening, and plasticity beyond a yield threshold. Plasticity originates from fibril-fibril sliding in aligned cellulose networks. This physical model provides quantitative insight into fundamental questions of plant mechanobiology and reveals design principles of biomaterials that combine stiffness with yielding and extensibility.

【链接】

https://science.sciencemag.org/content/372/6543/706

来源:科研圈

相关文章